Abstract
Accurate time series forecasting are important for displaying the manner in which the past continues to aect the future and for planning our day to day activities. In recent years, a large literature has evolved on the use of computational intelligence in many forecasting applications. In this paper, several computational intelligence techniques (genetic algorithms, neural networks, support vector machine, fuzzy rules) are combined in a distinct way to forecast a set of referenced time series. Forecasting performance is compared to the a standard and method frequently used in practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.