Abstract
This work presents a novel gray-based cost efficiency (GCE) model that integrates the gray forecasting model into a two-factor cost efficiency curve model for renewable energy (RE) technologies and identifies the optimal forecasting model for power generation cost of RE technologies. The analytical framework of proposed GCE model improves short-term prediction of power generation cost, and can be applied during the early developmental stages for RE technologies. Empirical analysis is based on wind power data for Taiwan. Time lag of knowledge stock was simulated to represent the actual relationship between R&D expenditures and cost reductions in power generation by knowledge stock. Analytical results demonstrate the GCE model is a useful tool to quantify the influences of cost reductions in power generation. The implications of analytical results are that institutional policy instruments play an important role in RE technologies achieving cost reductions and market adoption. The proposed GCE model can be applied to all high-technology cases, and particularly to RE technologies. The study concludes by outlining the limitations of the proposed GCE model and directions for further research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.