Abstract
Forecasting volatility is an important issue in financial econometric analysis. This paper aims to seek a computationally feasible approach for predicting large scale conditional volatility and covariance of financial time series. In the case of multi-variant time series, the volatility is represented by a Conditional Covariance Matrix (CCM). Traditional models for predicting CCM such as GARCH models are incapable of dealing with high-dimensional cases as there are O(N 2) parameters to be estimated in the case of N-variant asset return, and it is difficult to accelerate the computation of estimating these parameters by utilizing modern multi-core architecture. These GARCH models also have difficulties in modeling non-linear properties. The widely used Restricted Boltzmann Machine (RBM) is an energy-based stochastic recurrent neural network and its extended model, Conditional RBM (CRBM), has shown its capability in modeling high-dimensional time series. In this paper, we first propose a CRBM-based approach to forecast CCM and show how to capture the long memory properties in volatility, and then we implement the proposed model on GPU by using CUDA and CUBLAS. Experiment results indicate that the proposed CRBM-based model obtains better forecasting accuracy for low-dimensional volatility and it also shows great potential in modeling for large-scale cases compared with traditional GARCH models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.