Abstract

Purpose – Fluctuations in construction output has an adverse effect on the construction industry and the economy due to its strong linkage. Developing reliable and accurate predictive models is vital to implementing effective response strategies to mitigate the impact of such fluctuations. The purpose of this paper is to compare the accuracy of two univariate forecast models, i.e. Box-Jenkins (autoregressive integrated moving average (ARIMA)) and Neural Network Autoregressive (NNAR). Design/methodology/approach – Four quarterly time-series data on the construction output of Hong Kong were collected (1983Q1-2014Q4). The collected data were divided into two parts. The first part was fitted to the model, while the other was used to evaluate the predictive accuracy of the developed models. Findings – The NNAR model can provide reliable and accurate forecast of total, private and “others” construction output for the medium term. In addition, the NNAR model outperforms the ARIMA model, in terms of accuracy. Research limitations/implications – The applicability of the NNAR model to the construction industry of other countries could be further explored. The main limitation of artificial intelligence models is the lack of explanatory capability. Practical implications – The NNAR model could be used as a tool for accurately predicting future patterns in construction output. This is vital for the sustained growth of the construction industry and the economy. Originality/value – This is the first study to apply the NNAR model to construction output forecasting research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.