Abstract
Under China's new development philosophy, CO2 emissions forecasting is becoming more and more crucial for attaining carbon peaking and carbon neutrality targets. In light of this, this research suggests a new-information-based grey model built on cutting-edge methodologies that integrates the inventive damping accumulative generating operator, the data smoothing index, and particle swarm optimization. These three updates allow readers to anticipate the Chinese 30 provincial carbon emissions, which are characterized by insufficient information, regional heterogeneity, and complex patterns. For verification purposes, we investigate the robustness test referring to Monte-Carlo simulation and probability density analysis except as the multi-step-ahead forecasting. Extensive provincial experiments demonstrate that this proposed model considerably outperforms various prevailing competitors with remarkable universality, including grey models, artificial intelligence methods, and statistical models. Moreover, our critical empirical discovery is that this new model's performance fluctuates minimally across 30 provinces, with the average MAPE values less than 5% and 10% in the in-sample and out-of-sample periods, respectively, whereas the other benchmarks display unsteady simulation and prediction results. Furthermore, we employ the elite model to estimate Chinese 30 provincial CO2 emissions for the following three years, whose projections are endorsed by other studies and international organizations. Most importantly, our results provide insights for practitioners in formulating and implementing decarbonization policies and plans for specific provinces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.