Abstract
THE PURPOSE. Improving the accuracy of forecast calculations of demand for energy resources is an urgent task, especially in the light of the Digital Energy of the Russian Federation program. Prediction is also required for he at supply systems. The complexity of the analysis is the lack of confirmation of the similarity properties of energy systems and complexes for buildings with similar functionality. On the example of buildings of secondary educational institutions located i n the territory of Moscow, the assumption of heteromorphism of thermal systems is proved. METHODS. In the work, an assumption was made that there were no significant changes in the data on the heat consumption of the energy facilities of schools, which was confirmed by the absence of changes in the average annual heat consumption and jumps in the monthly heat consumption diagrams. The amount of heat energy consumption measured and transferred to the IS is influenced by a number of additional factors: accura cy drift of heat energy metering devices; aging and overgrowing of the internal surfaces of the building's heating network equipment; physical aging and deterioration of the building envelope and deterioration of their thermal insulation performance. When compiling predicted energy consumption, this means that it is permissible to use not only statistical data about the analyzed object itself, but also about a variety of objects similar to those analyzed in structure and functionality. RESULTS. A set of input factors is proposed that makes it possible to accurately determine the predicted demand for thermal energy for buildings of secondary educational institutions. The possibility and similar accuracy of the results of forecasting the demand for thermal ene rgy is shown both through the use of multivariate regression analysis and artificial neural networks. CONCLUSION. ЭBased on the combined use of various mathematical approaches, it is proposed to use the methodology for forecasting energy demand by energy complexes and systems as a mechanism for determining the correctness of the transmitted meter readings.
Highlights
Введение Повышение качества прогнозов на спрос энергетических ресурсов предприятиями, организациями и учреждениями является актуальным направлением в свете положений, зафиксированных в программе «Цифровая энергетика Российской Федерации» 1
Prediction is also required for heat supply systems
The complexity of the analysis is the lack of confirmation of the similarity properties
Summary
Введение Повышение качества прогнозов на спрос энергетических ресурсов предприятиями, организациями и учреждениями является актуальным направлением в свете положений, зафиксированных в программе «Цифровая энергетика Российской Федерации» 1. Первым допущением является факт создания прогнозной модели на основании статистических данных энергопотребления предприятия в прошлом с последующим составлением нескольких сценарных прогнозных моделей, например, для «нейтрального», «пессимистичного» и «оптимистичного» варианта развития событий. Высокая точность моделирования может быть достигнута посредством использования достаточно большого числа входных данных, обладающих высокой степенью точностью и достоверности.
Full Text
Topics from this Paper
Demand For Energy
Demand For Thermal Energy
Set Of Input Factors
Energy Systems
Energy Metering Devices
+ Show 5 more
Create a personalized feed of these topics
Get StartedTalk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Jan 1, 2019
Journal of Physics: Conference Series
Jul 1, 2020
Dec 1, 2015
Applied Mechanics and Materials
Jan 1, 2013
E3S Web of Conferences
Jan 1, 2020
Energy and Buildings
May 1, 2018
Smart Energy
Aug 1, 2021
Renewable Energy
Dec 1, 2020
Oct 15, 2021
Apr 28, 2023
The Problems of General Energy
Oct 30, 2015
Power engineering: research, equipment, technology
Power engineering: research, equipment, technology
Oct 26, 2023
Power engineering: research, equipment, technology
Oct 26, 2023
Power engineering: research, equipment, technology
Oct 26, 2023
Power engineering: research, equipment, technology
Oct 25, 2023
Power engineering: research, equipment, technology
Oct 25, 2023
Power engineering: research, equipment, technology
Oct 25, 2023
Power engineering: research, equipment, technology
Oct 25, 2023
Power engineering: research, equipment, technology
Aug 21, 2023
Power engineering: research, equipment, technology
Aug 21, 2023
Power engineering: research, equipment, technology
Aug 21, 2023