Abstract

Abstract A new general model describing the extended evolution of fore‐arc terrains is used to analyse the evolution of the southern Tasman Geosyncline and the concomitant growth and kratonisation of the continental crust of southeast Australia during the Palaeozoic. The southern Tasman Geosyncline comprises ten arc terrains (here defined), most of which are east‐facing, and several features formed by crustal extension. Each arc terrain consists of several strato‐tectonic units: a volcanic arc, subduction complex and fore‐arc sequence formed during subduction; and an overlying post‐arc sequence which post‐dates subduction and is composed of flysch, neritic sediments or subaerial volcanics. When these materials attained a thickness of c. 20 km their internal heat‐balance caused partial melting of the subduction complex and the hydrated oceanic lithosphere trapped beneath it, to yield S‐ and I‐type granitic magma. The magma rose, inducing pervasive deformation of each arc terrain and emplacement of granitoi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.