Abstract

This paper presents the design of a Superconducting Fault Current Limiter (SFCL) and calculation results of forces and stresses in the windings of a resistive fault current limiter. The design of the fault current limiter consists of two parallelly connected and magnetically coupled windings, cooled by a single stage cryocooler. Magnetically compensated windings made of HTS tape give a very low voltage on the limiter at a nominal current. Limitation of the short-circuit time and the value of the maximum initial fault current reduces the thermal and dynamic effects of the passage of a fault current. Using devices which limit the value of a fault current can lower the level of required short-circuit capacity of the elements in a system. However, selected means of fault currents limitation must maintain the power quality standards. A perfect fault current limiter is required to have substantial impedance in fault conditions and zero impedance at work currents. Such requirements are met by a SFCL. An increase of current caused by the occurrence of a fault current results in the transition of the superconducting material from the superconducting state into the resistive state. This increases the impedance of short-circuit loop, allowing the fault current value to decrease. During a short-circuit, the forces generated from the short-circuit current also act on the limiter windings. Short-circuit current causes stresses in the superconducting tape. Exceeding the permissible stress value results in an irreversible reduction in the critical current of the superconducting tape. Calculations of the forces and stresses in the HTS tape for the maximum value of the short-circuit current were carried out using the finite element method. The constructed limiter was tested and the winding design ensures that the tape stresses are at a safe level even for short-circuit currents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.