Abstract
<p>The OCCIPUT eddy-permitting (1/4°) global ocean/sea-ice 50-member ensemble simulation is analyzed over the period 1980-2015 to identify how the atmosphere and the intrinsic/chaotic ocean variability modulate the basin-scale Ocean Heat Content (OHC) at various timescales. In all regions of the simulated world ocean, the atmospherically-forced interannual OHC variability is driven by both air-sea heat fluxes (Qnet) and advective heat transport convergences (Conv), while the intrinsic component is driven by Conv, and damped by Qnet. </p><p>We focus on the Atlantic sector of the Southern Ocean (SA), where the oceanic “chaos” explains 36 to 90% of the interannual and decadal heat transport variability across the limits of the basin, and 22% of this huge basin’s OHC variability at interannual and decadal timescales.</p><p>The model also simulates the Antarctic Circumpolar Wave (ACW) that was observed in the 80-90’s, with large impacts on OHC and heat transports in the Southern Ocean. This forced signal appears south of Australia, propagates eastward around Antarctica and northward into the Tropical Atlantic and the Tropical Indian Ocean. </p><p>These results highlight the substantial contribution of large-scale low-frequency chaotic heat advection in eddy-active regions, and its major impact on decadal OHC variations over key basins. They suggest that climate simulations using eddying ocean models include an oceanic and random source of large-scale low-frequency variability whose atmospheric impacts remain to be assessed.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.