Abstract

Understanding developmental changes in contractility is critical to improving therapies for young cardiac patients. Isometric developed force was measured in human ventricular muscle strips from two age groups: newborns (<2 wk) and infants (3-14 mo) undergoing repair for congenital heart defects. Muscle strips were paced at several cycle lengths (CLs) to determine the force frequency response (FFR). Changes in Na/Ca exchanger (NCX), sarcoplasmic reticulum Ca-ATPase (SERCA), and phospholamban (PLB) were characterized. At CL 2000 ms, developed force was similar in the two groups. Decreasing CL increased developed force in the infant group to 131 +/- 8% (CL 1000 ms) and 157 +/- 18% (CL 500 ms) demonstrating a positive FFR. The FFR in the newborn group was flat. NCX mRNA and protein levels were significantly larger in the newborn than infant group whereas SERCA levels were unchanged. PLB mRNA levels and PLB/SERCA ratio increased with age. Immunostaining for NCX in isolated newborn cells showed peripheral staining. In infant cells, NCX was also found in T-tubules. SERCA staining was regular and striated in both groups. This study shows for the first time that the newborn human ventricle has a flat FFR, which increases with age and may be caused by developmental changes in calcium handling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.