Abstract

Kinesin is a biological molecular motor that can move continuously on microtubule until it unbinds. Here, we studied computationally the force dependence of the unbinding rate of the motor. Our results showed that while the unbinding rate under the forward load has the expected characteristic of “slip bond”, with the unbinding rate increasing monotonically with the increase of the forward load, the unbinding rate under the backward load shows counterintuitive characteristic of “slip-catch-slip bond”: as the backward load increases, the unbinding rate increases exponentially firstly, then drops rapidly and then increases again. Our calculated data are in agreement with the available single-molecule data from different research groups. The mechanism of the slip-catch-slip bond was revealed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.