Applied Artificial Intelligence | VOL. 27


Publication Date Jan 1, 2013


A fuzzy logic (FL)-based food security risk level assessment system is designed and is presented in this article. Three inputs—yield, production, and economic growth—are used to predict the level of risk associated with food supply. A number of previous studies have related food supply with risk assessment for particular types of food, but none of the work was specifically concerned with how the wider food chain might be affected. The system we describe here uses the Mamdani method. The resulting system can assess risk level against three grades: severe, acceptable, and good. The method is tested with UK (United Kingdom) cereal data for the period from 1988 to 2008. The approach is discussed on the basis that it could be used as a starting point in developing tools that may either assess current food security risk or predict periods or regions of impending pressure on food supply.


Particular Types Of Food Food Security Risk Assess Risk Level Food Supply Mamdani Method Types Of Food Fuzzy Logic Risk Level Economic Growth United Kingdom

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Jan 23, 2023 to Jan 29, 2023

R DiscoveryJan 30, 2023
R DiscoveryArticles Included:  3

Climate change adaptation has shifted from a single-dimension to an integrative approach that aligns with vulnerability and resilience concepts. Adapt...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19


Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.