Abstract

Prostaglandin E2 (PGE2), an important lipid inflammatory mediator involved in the progression of vascular diseases, can be induced by hypoxia in many cell types. While folic acid has been shown to protect against inflammation in THP-1 cells during hypoxia and hypoxia-induced endothelial cell injury, whether it might do so by attenuating PGE2 production remains unclear. To investigate this we constructed a hypoxia-induced injury model by treating human umbilical vein endothelial cells (HUVECs) with cobalt chloride (CoCl2), which mimics the effects of hypoxia. In CoCl2-treated HUVECs, folic acid significantly attenuated PGE2 production and increased vasoprotective nitric oxide (NO) content. Folic acid also decreased cyclooxygenase-2 (COX-2) and hypoxia-inducible factor 1-alpha (HIF-1α) expression and altered endothelial nitric oxide synthase (eNOS) signaling by increasing p-eNOS(Ser1177) and decreasing p-eNOS(Thr495) in a dose-dependent manner. Further investigation of the pathway demonstrated that treatment with 2-Methoxyestradiol (2-MeOE2) and celecoxib both decreased CoCl2-induced COX-2 expression but only 2-MeOE2 decreased HIF-1α expression. The ability of folic acid to down-regulate HIF-1α and COX-2 protein levels was dramatically abrogated by L-NAME treatment, which also decreased eNOS mRNA and NO production. The NO donor sodium nitroprusside also dose-dependently down-regulated HIF-1α and COX-2 protein levels. Overall, these findings suggest a novel application for folic acid in attenuating CoCl2-induced PGE2 production in HUVECs via regulation of the NO/HIF-1α/COX-2 pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.