Abstract

Dry deposition of Black Carbon (BC) to the actual leaves of konara oak (Quercus serrata) was evaluated in a foliar rinse method in an experimental forest in the suburbs of Tokyo, Japan in order to explore deposition levels and vertical profile within the forest. At three heights of the forest of 20 m height, 20 m, 15 m, and 6 m or 4 m, leaves were sampled on a weekly basis for a couple of months in 2011 and 2012 and subjected to rinsing with water and chloroform. The BC in the rinse solution was collected on a quartz fiber filter and determined by spectrophotometry. The BC mass deposited to leaves increased with height and this profile pattern was generally maintained in the study period. The specific BC mass deposited to leaves showed considerable fluctuations with time, but the deposited BC increased rapidly with time in the bud flushing stage, then attained to a plateau, and began to decrease as the defoliation advanced. The plateau is a result of a simple accumulation with time and occasional removal due to rainfall and strong winds. The maximum BC mass deposited to leaves per leaf surface unit area occurred in June where the level was 10–15 mg-BC m−2. The rate of BC mass deposited to leaves at the time of leaves growing was determined to be 0.237 and 0.277 mg-BC m−2 day−1 for measurements in 2011 and 2012, respectively. On the basis of the observed BC mass deposited to the leaves, BC mass deposited to leaves per forest floor unit area estimated with LAI showed a strong seasonality. The BC mass deposited to leaves per forest floor unit area was compared to the deposition flux from the atmosphere to the forest canopy, which would be interpreted as indicating that 30% of atmospheric BC deposition to the canopy was retained on the leaves in time of leaves growing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.