Abstract

Model-based studies on helix-coil transition and folding cooperativity of synthetic polypeptides have contributed to the understanding of protein folding and stability and to the development of polypeptide-based functional materials. Polypeptide-containing macromolecules with complex architectures, however, remain a challenge in the model-based analysis. Herein, a modified Schellman-Zimm-Bragg model has been utilized to quantitatively analyze the folding cooperativity of polypeptide-containing macromolecules. While the helix-coil transition of homopolypeptides (e.g., poly(ε-benzyloxycarbonyl-l-lysine) (PZLL)) can be described by the classic model, the folding of grafted polypeptide chains in the comb macromolecules (e.g., polynorbornene-g-poly(ε-benzyloxycarbonyl-l-lysine) (PN-g-PZLL)) cannot be accurately predicted by the existing theories, due to the side-chain interactions between grafted polypeptides in the comb macromolecules. Incorporating nonlocal interaction explicability into the statistical mechanics treatment is found to be instructive to account for the possible "tertiary" interactions of polypeptides in the macromolecules with complex architectures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.