Abstract
Probiotic bacteria, mostly belonging to the genera Lactobacillus and Bifidobacterium, confer a number of health benefits to the host, including vitamin production. With the aim to produce folate-enriched fermented products and/or develop probiotic supplements that accomplish folate biosynthesis in vivo within the colon, bifidobacteria and lactobacilli have been extensively studied for their capability to produce this vitamin. On the basis of physiological studies and genome analysis, wild-type lactobacilli cannot synthesize folate, generally require it for growth, and provide a negative contribution to folate levels in fermented dairy products. Lactobacillus plantarum constitutes an exception among lactobacilli, since it is capable of folate production in presence of para-aminobenzoic acid (pABA) and deserves to be used in animal trials to validate its ability to produce the vitamin in vivo. On the other hand, several folate-producing strains have been selected within the genus Bifidobacterium, with a great variability in the extent of vitamin released in the medium. Most of them belong to the species B. adolescentis and B. pseudocatenulatum, but few folate producing strains are found in the other species as well. Rats fed a probiotic formulation of folate-producing bifidobacteria exhibited increased plasma folate level, confirming that the vitamin is produced in vivo and absorbed. In a human trial, the same supplement raised folate concentration in feces. The use of folate-producing probiotic strains can be regarded as a new perspective in the specific use of probiotics. They could more efficiently confer protection against inflammation and cancer, both exerting the beneficial effects of probiotics and preventing the folate deficiency that is associated with premalignant changes in the colonic epithelia.
Highlights
The consumption of live microbial supplements with presumptive health benefits on human physiology, the so-called probiotics, has become a common practice
The simultaneous consumption of probiotics and prebiotic carbohydrates further increased the level of the probiotic strains in the intestine and resulted in the highest level of serum folate, confirming that the availability of a preferred indigestible carbon source is advantageous for the growth and the metabolic activity of probiotic bacteria
Within the genus Lactobacillus, the strains belonging to the species L. plantarum are expected to produce folate in the presence of preformed para-aminobenzoic acid (pABA), while the other species cannot be regarded as folate producers
Summary
The consumption of live microbial supplements with presumptive health benefits on human physiology, the so-called probiotics, has become a common practice. The production of vitamins has been claimed among the causal relationships of the healthy benefits of probiotics. Efficiency of DNA replication, repair and methylation are affected by folate, high amounts of folate are required by fast proliferating cells such as leucocytes, erythrocytes and enterocytes [3]. Epidemiological studies indicated that folate deficiency is often associated with increased risk of breast cancer and that low folate homeostasis may induce hypomethylation of DNA, thereby promoting cancer on the proliferating cells of the colorectal mucosa that supports rapid and continuous renewal of the epithelium [4,5]. Increased folate intake is recommended for patients with inflammatory bowel diseases, contributing to regulation of rectal cell turnover [6]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.