Abstract
We derive integral representations suitable for studying the focusing of electromagnetic waves through a plane interface into a uniaxial crystal. To that end we start from existing exact solutions for the transmitted fields due to an arbitrary three-dimensional (3D) wave that is incident upon a plane interface separating two uniaxial crystals with arbitrary orientation of the optical axis in each medium. Then we specialize to the case in which the medium of the incident wave is isotropic and derive explicit expressions for the dyadic Green's functions associated with the transmitted fields as well as integral representations suitable for asymptotic analysis and efficient numerical evaluation. Relevant integral representations for focused 3D electromagnetic waves are also given. Next we consider the special case in which (i) the incident field is a two-dimensional (2D) TM wave and (ii) the optical axis in the crystal lies in the plane of incidence, implying that we have a 2D vectorial problem, and derive dyadic Green's functions, integral representations suitable for asymptotic and numerical treatment, and integral representations for focused TM fields. Numerical results for focused 2D TM fields based on these integral representations as well as corresponding experimental results will be presented in forthcoming papers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.