Abstract

The anisotropic characteristics of an iron silicide (Fe3Si) epitaxial thin magnetic film grown on a Si(111) silicon vicinal surface with a misorientation angle of 0.14° have been measured by the ferromagnetic resonance method. It has been shown that the polar and azimuth misorientation angles of the crystallographic plane of the substrate can be determined simultaneously from the angular dependences of the ferromagnetic resonance field of the epitaxial film. The effective saturation magnetization of the film Meff = 1105 G and the constant of the cubic magnetocrystalline anisotropy K4 = 1.15 × 105 erg/cm3 have been determined. The misorientation of the substrate plane leads to the formation of steps on the film surface and, as a result, to the appearance of uniaxial magnetic anisotropy of the magnetic dipole nature with the constant K2 = 796 erg/cm3. Small unidirectional magnetic anisotropy (K1 = 163 erg/cm3), which may be associated with symmetry breaking on the steps of the film and is due to the Dzyaloshinskii–Moriya interaction, has been detected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.