Abstract
We present a post-processing technique for the mimetic finite difference solution of diffusion problems in mixed form. Our post-processing method yields a piecewise linear approximation of the scalar variable that is second-order accurate in the L 2-norm on quite general polyhedral meshes, including non-convex and non-matching elements. The post-processing is based on the reconstruction of vector fields projected onto the mimetic space of vector variables. This technique is exact on constant vector fields and is shown to be independent of the mimetic scalar product choice if a local consistency condition is satisfied. The post-processing method is computationally inexpensive. Optimal performance is confirmed by numerical experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.