Abstract

Penetration of perpendicular magnetic flux into a ${\mathrm{Bi}}_{2}{\mathrm{Sr}}_{2}\mathrm{Ca}{\mathrm{Cu}}_{2}{\mathrm{O}}_{8+}\ensuremath{\delta}$ single crystal platelet with irradiation-enhanced pinning in its edge zone is observed by magneto-optics. When the flux front reaches the inner boundary of the irradiated zone, magnetic flux leaks to the center and then gradually fills the unirradiated zone from the middle. We observe vortex motion against the flux-density gradient (driven by the vortex curvature) and large "overcritical" Meissner currents in the flux-free zone. The measured flux profiles agree with planar calculations assuming a nonlinear resistivity with different critical current densities in the central and edge zones of a disk or strip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.