Abstract

Autophagy is a central mechanism to regulate homeostasis. Alterations of autophagy contribute to aging-related diseases. Phenotypic methods to identify regulators of autophagy could be used for the identification of novel therapeutics. This article describes a cell-based imaging screening workflow developed to monitor autophagic flux using LC3 as a reporter of autophagic flux (mCherry-EGFP-LC3B) in human chondrocytes. Data acquisition is performed using an automated High Content Imaging Screening System microscope. An algorithm-based automated image analysis protocol was developed and validated to identify molecules activating autophagic flux. Critical steps, explanatory notes, and improvements over current autophagy monitoring protocols are reported. Physiologically relevant phenotypic screening approaches to target hallmarks of aging can facilitate more effective drug discovery strategies for age-related musculoskeletal diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.