Abstract

Fluoroquinolone (FQ) antibiotics are a group of contaminants of emerging environmental concern. In the present study, we demonstrated that norfloxacin (NORF) and ofloxacin (OFLO), two typical FQs, have photochemical reactivity analogous to chromophoric dissolved natural organic matter (DOM) in surface waters and can sensitize the photodegradation of isoproturon (IPU), a phenylurea herbicide. Such photochemical reactivity is ascribed to the quinolone chromophore that is excited to a triplet state (3FQ*) upon UV-A irradiation. 3FQ* further reacts with dissolved oxygen to give rise to singlet oxygen. 3FQ* steady-state concentrations of 6.72 × 10−15 and 1.27 × 10−15 M were measured in 10 μM NORF and OFLO solutions, respectively, under UV365nm irradiation. The degradation of IPU was due to the reaction with 3FQ*, with bimolecular rate constants of 6.07 × 109 and 1.51 × 1010 for 3NORF* and 3OFLO*, respectively. Intriguingly, NORF and OFLO per se were unstable and photolyzed during UV-A irradiation, but the photochemical reactivities of the solutions were not lost accordingly. High-resolution mass spectrometry analysis revealed that defluorination and piperazine moiety oxidation were the main photolysis pathways, while the core quinolone structure remained intact. Thus, the photolysis products largely inherited the photochemical reactivity of the parent compounds. Since all FQs share the same quinolone structure, similar photochemical reactivity is expected. The presence of FQs in surface water would affect the transformation and fate of coexisting compounds. To the best of our knowledge, this is the first study examining the environmental behavior of FQs as photosensitizers. The findings greatly advance the understandings of the influence of FQs in aquatic environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.