Abstract

AbstractTen model coatings, selected and obtained from a family of fluorinated resins synthesized by the reaction of perfluoroether oligomeric diols of different molecular weights with polyisocyanurates of hexamethylenediisocyanate (HDI) and isophoronediisocyanate (IPDI), were characterized with differential scanning calorimetry, mechanical testing, and electrochemical impedance spectroscopy measurements. The electrochemical and chemico‐physical measurements show that the glass‐transition temperature of the starting isocyanate trimers greatly influences the properties of the final urethane coatings; the IPDI trimer gives harder coatings with lower water permeabilities than the corresponding HDI‐based materials. Moreover, for each class of materials (from IPDI or HDI), the fluorine content plays a relevant role: the higher the fluorine percentage, the lower the water absorption into the coatings. Furthermore, the chain length of the polyols used for the synthesis of the prepolymers is a variable that exhibits great influence on the coating properties: coatings containing shorter perfluoropolyether segments show better barrier properties. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 52–64, 2002

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.