Abstract

The authors describe a fluorometric method for determination of the activity of alkaline phosphatase (ALP) and its inhibitors. Nitrogen and boron co-doped carbon dots (C-dots) with excitation/emission peaks at 490/540nm act as the fluorescent probe. The C-dots were prepared by hydrothermal carbonization starting from 3-aminophenylboronic acid as the sole precursor. On the basis of the boronic acid-triggered specific reaction with cis-diols, the boronic acid modified C-dots can bind to ascorbic acid that is generated by ALP-catalyzed hydrolysis of ascorbic acid 2-phosphate. This results in particle aggregation and quenching of fluorescence. If the ALP inhibitor Na3VO4 is introduced into the system, the activity of ALP is reduced and the fluorescence of C-dots recovers. This fluorometric method allows for the determination of ALP activity in the range from 0.2 to 6.0mUmL-1 with a detection limit of 0.16mUmL-1. The IC50 value for the inhibitor Na3VO4 is 3.6μM. The method is convenient and cost-effective. It does not require complicated operations and in our perception widens the scope of applications of C-dots in bioanalytical sciences. Graphical abstract Schematic presentation of the nitrogen and boron co-doped carbon dot-based fluorometric method for determination of alkaline phosphatase (ALP) activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.