Abstract
The devastating COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made society acutely aware of the urgency in developing effective techniques to timely monitor the outbreak of previously unknown viral species as well as their mutants, which could be even more lethal and/or contagious. Here, we report a fluorogenic sensor array consisting of peptides truncated from the binding domain of human angiotensin-converting enzyme 2 (hACE2) for SARS-CoV-2. A set of five fluorescently tagged peptides were used to construct the senor array in the presence of different low-dimensional quenching materials. When orthogonally incubated with the wild-type SARS-CoV-2 and its variants of concern (VOCs), the fluorescence of each peptide probe was specifically recovered, and the different recovery rates provide a "fingerprint" characteristic of each viral strain. This, in turn, allows them to be differentiated from each other using principal component analysis. Interestingly, the classification result from our sensor array agrees well with the evolutionary relationship similarity of the VOCs. This study offers insight into the development of effective sensing tools for highly contagious viruses and their mutants based on rationally truncating peptide ligands from human receptors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.