Abstract

Functionalization of the surfaces of silica particles is often the first step in their various applications. An improved heterogeneous Fmoc-Cl fluorescent assay using an aqueous solution was developed to detect the number of amino groups on solid-phase supports. The fluorescent Fmoc-Cl method is 50-fold more sensitive than the current UV assay using an organic solvent. This method, together with the homogeneous fluorescamine and OPA assays, is used to detect amino groups on the silica particle surface. The accuracy and effect factors of these methods were examined and the assays were optimized. The results showed that the amine groups on silica particles can produce stronger fluorescence than small amine molecules in solution, because the porous structure of the particle surface is a more hydrophobic environment. The number of active amino groups that can be conjugated with biomolecules is much less than the total number of amino groups on the silica particle. Compared with physical methods, chemical assays involving direct reaction with amino groups would furnish the closest result to the number of active amino groups on the particle surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.