Abstract

Notch activation inhibits neuronal differentiation during development of the nervous system; however, the dynamic role of Notch signaling in individual cell lineages remains poorly understood. We have characterized 3.4 kb 5′-regulatory sequence of a Notch target gene, her4, and used it to drive fluorescent gene expression in transgenic lines where the spatiotemporal pattern of Notch activation can be examined in vivo. The 3.4 kb her4 promoter contains five predicted Su(H) binding sites of which two proximal sites were confirmed to be required for Notch-mediated transcriptional activation. Without Notch, Su(H) effectively represses transcription regulated by the promoter. Analyses of transgenic zebrafish showed that while the expression of proneural genes and Notch activation were both critical for endogenous her4 expression, reporter gene expression was primarily regulated by Notch activity. This study also showed that her4 may be differently regulated in sensory cranial ganglia, where Notch activity is not essential for her4 expression and where Su(H) may repress her4 expression. The establishment of a reporter line with Notch-Su(H)-dependent fluorescent gene expression provides a tool to explore the complex role of Notch signaling in the development of vertebrate nervous system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.