Abstract

Fluorescent sensor molecules were synthesized by conjugation of iminodiacetamide derivatives with fluorescent moieties of different structures and their UV-visible and fluorescent properties were characterized in acetonitrile solvent. The fluorescent measurements revealed that the N-(2-naphthyl) and N-phenyl derivatives exhibit a distinct zinc ion-selectivity over alkali and alkaline earth metal ions, while N-(anthrylmethyl) and N-(3-methoxyphenyl) derivatives do not possess any ion-selectivities. In contrast to the fluorescent measurements, all ligands show Zn(2+) selectivity over Ca(2+) and Mg(2+) ions in plasticized PVC membranes using potentiometric signal transduction. This observation found for N-(anthrylmethyl) and N-(3-methoxyphenyl) derivatives can be ascribed to the more hindered interaction between the signalling group of the ionophore and the central metal ion in PVC membranes than in acetonitrile solution upon complexation. From the fluorescent measurements it can also be concluded that the ligands with metal ions form complexes mainly with 2:1 stoichiometry (L(2)M). On complex formation a considerable decrease in the fluorescent intensity was observed for all ligands except the N-(anthrylmethyl) derivative, where a 25 - 30 fold fluorescence enhancement was found, which is explained by the photoinduced electron transfer (PET) mechanism. All ionophores exhibited serious hydrogen ion interference, therefore complexation-induced spectral changes were measured in aprotic acetonitrile solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.