Abstract

ABSTRACTWe demonstrate the design of novel sensor particles that display fluorescence in the presence of elastase, an enzyme that is present at elevated levels in chronic (non-healing) wounds. Poly(ethyleneglycol acrylamide) hydrogel particles, approximately 200μm in diameter are used as a polymeric matrix, to which a peptide based sensing element is attached. This sensing element consists of a Förster resonance energy transfer (FRET) pair separated by an enzyme cleavable linker. In addition, negatively charged Glutamic acid (Glu) residues are incorporated into the hydrogel structure to facilitate diffusion of the positively charged enzyme into the hydrogel matrix. Enzymatic hydrolysis of the enzyme cleavable linker results in fluorescence of the donor molecule being switched on. We have shown that these particles can detect elastase to a concentration of 100ng/ml, a concentration found in chronic wound fluids. These particles simultaneously detect and address balances in elastase levels and may therefore find applications as smart wound dressings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.