Abstract

Recent advances in single-molecule detection and single-molecule spectroscopy at room temperature by laser-induced fluorescence offer new tools for the study of individual macromolecules under physiological conditions. These tools relay conformational states, conformational dynamics, and activity of single biological molecules to physical observables, unmasked by ensemble averaging. Distributions and time trajectories of these observables can therefore be measured during a reaction without the impossible need to synchronize all the molecules in the ensemble. The progress in applying these tools to biological studies with the use of fluorophores that are site-specifically attached to macromolecules is reviewed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.