Abstract

We have developed a fluorescence enhancement system for biomolecular detection using a monolithic waveguide sensing plate. The plate consists of a thermally grown amorphous SiO2 layer, a Si single-crystal layer, and bulk amorphous SiO2. Waveguide-mode excitation in this plate produces an enhanced electric field on the plate surface, and therefore, signals from analyte-labeling fluorescent dyes are enhanced. In the present paper, we elucidate the impact of the system from viewpoints of the electric field enhancement factor calculated numerically and the analysis of the limit of detection estimated from experimental results. Optimal layer thicknesses of the plates to achieve the highest sensitivity are also discussed. Further, an interesting phenomenon that accompanied the waveguide-mode excitation, namely, photoluminescence from the amorphous SiO2 layer itself, is also reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.