Abstract

The analytical expression for the polarization anisotropy is derived for a luminophore undergoing rotational diffusion about a single axis while attached to a nonluminescing, rotationally diffusing, symmetrical carrier molecule. In contrast to previous related calculations, the rotation axis of the luminophore is assumed to have an arbitrary orientation relative to the carrier. Additionally, the polarization anisotropy is measured for bovine serum albumin (BSA) labeled with dansyl, NBD, rhodamine, or eosin that is: (a) surface adsorbed to a glass/buffer interface, using a variation of the technique of total internal reflection fluorescence spectroscopy (TIRFS), or (b) bulk dissolved, using conventional transmitted illumination fluorescence spectroscopy. With this theory, using previously published values for the rotational diffusion constants of BSA and the fluorescence lifetimes of the fluorophores, the rotational diffusion constant of the covalently bound probes is estimated from the measured anisotropy values. The results indicate a wide variability in the rotational diffusion constant of the probes (from ∼107 s−1 for dansyl to ∼109 s−1 for eosin) attached to both the surface adsorbed and bulk dissolved forms of BSA. Contrasting the rotational diffusion constant for each probe for surface adsorbed BSA vs bulk dissolved BSA indicates surface adsorption of the BSA molecule inhibits the rotational motion of the probe. These results have important implications in the application of other fluorescence techniques, such as singlet–singlet energy transfer, where the rotational mobility of the probe is important.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.