Abstract

The cytochrome P450 enzymes (CYPs), a group of heme-containing enzymes, catalyze oxidative metabolism of a wide range of drugs and xenobiotics, as well as different endogenous molecules. Strong inhibition of human CYPs is the most common cause of clinically associated pharmacokinetic drug-drug/herb-drug interactions (DDIs/HDIs), which may result in serious adverse drug reactions, even toxicity. Accurate and rapid assessing of the inhibition potentials on CYP activities for therapeutic agents is crucial for the prediction of clinically relevant DDIs/HDIs. Over the past few decades, significant efforts have been invested into developing optical substrates for the human CYPs, generating a variety of powerful tools for high-throughput assays to detect CYP activities in biologic specimens and for screening of CYP inhibitors. This minireview focuses on recent advances in optical substrates developments for human CYPs, as well as their applications in screening CYP inhibitors and DDIs/HDIs studies. The examples for rational design and optimization of highly specific optical substrates for the target CYP enzyme, as well as applications in investigating CYP-mediated DDIs, are illustrated. Finally, the challenges and future perspectives in this field are proposed. Collectively, this review summarizes the reported optical-based biochemical assays for highly efficient CYP activities detection, which strongly facilitated the discovery of CYP inhibitors and the investigations on CYP-mediated DDIs. SIGNIFICANCE STATEMENT: Optical substrates for cytochrome P450 enzymes (CYPs) have emerged as powerful tools for the construction of high-throughput assays for screening of CYP inhibitors. This mini-review covers the advances and challenges in the development of highly specific optical substrates for sensing human CYP isoenzymes, as well as their applications in constructing fluorescence-based high-throughput assays for investigating CYP-mediated drug-drug interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.