Abstract
Although the unique mechanism by which hepatitis B virus (HBV) polymerase primes reverse transcription is now well-characterized, the subsequent elongation process remains poorly understood. Reverse transcriptase (RT)-RNase H sequences from polymerase amino acid 304 (the C-terminal part of spacer domain) to 843 were expressed in Escherichia coli and purified partially. RT elongation activity was investigated using the fluorescent-tagged primer and homopolymeric RNA templates. RT elongation activity depended on both Mg2+ and Mn2+, and had low affinity for purine deoxynucleotides, which may be related with the success of adefovir, tenofovir, and entecavir. However, the polymerization rate was lower than that of human immunodeficiency virus RT. All HBV genotypes displayed similar RT activity, except for genotype B, which demonstrated increased elongation activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.