Abstract

Using the steady-state and time-resolved fluorescence anisotropy, the mobility of 5-(dimethylamino)naphthalene-1-sulfonyl (dansyl) fluorophore in homologous 1-[2-acetamido-3-(1H-indol-3-yl)propanamido]-n-[5-(dimethylamino)naphthalene-1-sulfonamido]alkanes 1 was studied in binary solvents glycerol-water. Steady-state fluorescence data were evaluated by the generalized Perrin equation and the micro-Brownian motion of dansyl fluorophore was described by means of average characteristics (rotational relaxation times) of the rotational relaxation spectrum. The rotational relaxation time of "fast" motions caused by torsional vibrations of single bonds within the rotational-isomeric states decreases with increasing number of methylene groups in homologous compounds. The rotational relaxation time of "slow" motions due to conformational changes of the chain between the tryptophane and dansyl fluorophore remains at first approximately constant with increasing number of methylene groups but increases considerably for long aliphatic chains. The observed decrease in the rate of conformational changes of a long aliphatic chain is probably due to intramolecular interaction of parts of the methylene chain in a medium with high water content. The values of activation enthalpy ∆H≠ and activation entropy ∆S≠ calculated from experimental data corroborate such interpretation. Time-resolved anisotropy of dansyl fluorophore at a particular binary solvent composition confirmed the shape of rotational relaxation spectrum and the measured rotational correlation times have been discussed. The time-dependent decays of anisotropy supported our previous interpretation in terms of intramolecular association of the long aliphatic chain in polar medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.