Abstract

A new bisphenol monomer, 9,9-bis(3,5-dimethoxy-4-hydroxyphenyl) fluorene, was synthesized and polymerized to form fluorene-based poly(arylene ether sulfone) copolymers containing tetra-methoxy groups (MPAES). After converting the methoxy group to the reactive hydroxyl group, the respective side-chain type sulfonated copolymers (SPAES) were obtained by sulfobutylation. The polymers were characterized by 1H NMR, thermogravimetric analysis (TGA), water uptake, and proton and methanol transport for fuel cell applications. These SPAES copolymers had good overall properties as polymer electrolyte membrane (PEM) materials, having high proton conductivity in the range of 0.061–0.209 and 0.146–0.365 S/cm at 30 and 80 °C (under hydrated conditions), respectively. SPAES-39 (IEC = 1.93 mequiv/g) showed higher or comparable proton conductivity than that of Nafion 117 at 50–95% RH (relative humidity). The methanol permeabilities of these membranes were in the range of 3.22 to 13.1 × 10–7 cm2/s, which is lower than Nafi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.