Abstract

BackgroundAtherosclerosis is associated with disturbed blood flow characterized by low and oscillatory shear stress (SS), however, few study directly links SS to neointimal hyperplasia in animal model. This study was focused on the effects of changed SS upon the neointimal hyperplasia which responded to balloon injury in a novel rabbit model with partially-constricted abdominal aorta.MethodsWe established a rabbit model subjected to partial abdominal aortic constriction with a cylinder-shaped cannula as a model of disturbed flow, which was similar to the hemodynamic features of stenosis caused by atherosclerosis plaque. Further, balloon injury was performed to investigate the relationship between SS and neointimal hyperplasia. Four weeks later, the abdominal aorta was assessed with digital subtraction angiography (DSA) and intravascular ultrasound (IVUS). The vascular sections were embedded in paraffin blocks for morphometric analysis to evaluate neointimal hyperplasia, and anti-CD31 immunohistochemical staining was for endothelialization ratio.ResultsIn upstream the stenosis, the changed SS leads to neointimal hyperplasia compared with normal SS (11,729 ± 1205 vs 8418 ± 737, P = 0.023). However, the upstream SS of the stenosis can promote vascular re-endothelialization after balloon injury compared with normal SS, verified by endothelialization ratio (0.36 ± 0.03 vs 0.32 ± 0.03, P = 0.017), thereby attenuate neointimal hyperplasia (64,851 ± 3995 vs 68,335 ± 3867, P = 0.018).ConclusionThe upstream SS of stenosis, not downstream SS, inhibits the neointimal hyperplasia after balloon injury by promoting vascular re-endothelializtion.

Highlights

  • Atherosclerosis is associated with disturbed blood flow characterized by low and oscillatory shear stress (SS), few study directly links SS to neointimal hyperplasia in animal model

  • There was no significant difference in body weight between the five groups, suggesting model was successfully established

  • The upstream SS of stenosis attenuates the lumen loss after balloon injury Four weeks later, the upstream and downstream vascular diameters of the separated arteries were measured by intravascular ultrasound (IVUS) in order to evaluate the vascular remodeling which was secondary to the balloon injury and/or constriction

Read more

Summary

Introduction

Atherosclerosis is associated with disturbed blood flow characterized by low and oscillatory shear stress (SS), few study directly links SS to neointimal hyperplasia in animal model. A variety of models in vitro have been established to regulate shear flow to ECs, which are aimed to mimic important features of ECs flow environments in vivo. These models helped researchers to explore detailed mechanisms of their responses to SS, including the effects on EC morphology, cytoskeletal organization, proliferation, migration, permeability and junctional proteins, EC signaling and gene expression [1, 4, 5]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.