Abstract

Three-dimensional x-ray computer tomography images were obtained of electrospun poly(acrylonitrile) electrodes for a flow battery. The materials were imaged before and after carbonization. Information about the internal morphology; local fiber size and porosity, was analyzed and provided key insights into both the electrospinning and carbonizing processes. It was found that traditional imaging techniques may not be suitable for materials generated through electrospinning as it is a highly dynamic process. The fiber size tended to vary throughout the process while the porosity was relatively constant. Viscous flow was modelled through the material using the Lattice Boltzmann Method and the 3D flow fields that resulted provided further information about the role of heterogenous features on the performance of an electrospun electrode in a flow battery. The local porosity of the material had the largest effect on the material’s flow dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.