Abstract

ABSTRACT Fluid temperature predictions of geothermal borefields usually involve temporal superposition of its characteristic g-function, using load aggregation schemes to reduce computational times. Assuming that the ground has linear properties, it can be modelled as a linear state-space system where the states are the aggregated loads. However, the application and accuracy of these models is compromised when the borefield is already operating and its load history is not registered or there are gaps in the data. This paper assesses the performance of state observers to estimate the borefield load history to obtain accurate fluid predictions. Results show that both Time-Varying Kalman Filter (TVKF) and Moving Horizon Estimator (MHE) provide predictions with average and maximum errors below 0.1C and 1C, respectively. MHE outperforms TVKF in terms of n-step ahead output predictions and load history profile estimates at the expense of about five times more computational time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.