Abstract

Damping changeability design and evaluation is the most fundamental issue at the beginning of any new railway semi-active hydraulic damper development. Therefore, physical fluid mechanics for the calculation of basic structure and resistance parameters of the damper should be carefully studied in the conceptual phase. Fluid formulae for changeable damping performance evaluation of two commercial railway semi-active hydraulic dampers are established. Simulation results show that the damper switched by high-speed solenoid valves obtains a wide range of changeable damping coefficients, which guarantees the absorption of a wide spectrum of vibrations; however, a different low cost damper regulated with an inversely proportional relief valve, whose Force–velocity characteristics share the same rising curve, is relatively limited in damping ability. In order to overcome the drawback of the latter one with no obvious cost increase, a new semi-active hydraulic damper which is regulated by a simple proportional throttle valve is proposed. Continued fluid formulation and simulation suggests that the damper can change its damping force rising curves or “effective” damping coefficients continuously, within a considerably wide range. Thus, fluid formulae explicitly established in this study are of significance in the damping changeability conceptual design, further refinement and control design for the three semi-active hydraulic dampers. The proposed new damper, which has both a simple configuration and an easy-to-control ability, might be feasible for industry applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.