Abstract

Fluid simulation on interacting deformable surfaces is a challenging problem that has many applications. In this paper, we present a framework in which artistic as well as physically realistic flows can be generated on surfaces during deformation and collision. Our simulation system provides comprehensive control over the motion and deformation of an object as well as the movement and density of the fluid on the surface. At the heart of our system is a numerical solver that allows viscous and incompressible flows to be directly generated on surfaces using concepts from differential geometry, such as geodesic polar maps and parallel transport. This solver is fast and stable even when the object undergoes deformation or collides with other surfaces. We also propose rules that allow deformation and collisions to impact fluid flows in a physically realistic manner. By combining these rules with a set of comprehensive design functionalities, we develop a system in which the user can specify shape deformation, collision, and fluid flow in a unified framework. We demonstrate the capability of our system with a number example scenarios. CR Categories: I.3.7 [COMPUTER GRAPHICS]: ThreeDimensional Graphics and Realism—Animation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.