Abstract

A series of experimental investigations on the studies related to fluid flow characteristics of a confined rotating Multi-Chip Module (MCM) disk with round air jet array impingement have been performed. The relevant parameters influencing fluid flow characteristics include the ratio of jet separation distance to nozzle diameter (H/d), jet Reynolds number (Rej) and rotational Reynolds number (Rer). The parametric ranges are Rej = 712 – 4087, Rer = 0 – 2906, H/d = 0.83–14.4 and Z/d = 1–7. The potential core lengths of all the nozzle jets increases with increasing jet Reynolds number or H/d ratio and decreases with increasing rotational Reynolds number. New correlations of the ratio of potential core length to nozzle diameter at various nozzle jets in terms of relevant influencing parameters are proposed. Furthermore, the strengths on both streamwise velocity and turbulence intensity increase with increasing Z/d ratio. The turbulence intensity for the cases of jet array impingement growing up along the axial directions are significantly faster than the cases of single round jet impingement. The jet array impingement has a higher momentum flux in the flow interaction region between two adjacent nozzles; accordingly, it can achieve a more uniform thermal performance as compared with the cases of single round jet impingement. Near-surface fluid flow behavior including the streamwise velocity and turbulence intensity distributions can be employed to interpret the heat transfer characteristics for jet array impingement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.