Abstract

This study presents analytical models for naturally fractured tectonic reservoirs (NFTRs), which essentially correspond to type I fractured reservoirs, including the effects of the nonlinear gradient term for radial flow, single phase (oil), for constant rate in an infinite reservoir. Using an exact solution of Navier–Stokes equation and Cole–Hopf transform, NFTRs have been modeled. Our models are applied for fissured formations with extensive fractures. Smooth and rough extension fractures were analyzed using single and slab flow geometries. The motivation for this study was to develop a real and representative model of a NFTR, with extension fractures to describe its pressure behavior. A discussion is also presented with field examples, regarding the effect of a quadratic gradient term and the difference between the nonlinear and linear pressure solutions, comparing the Darcy laminar flow equation, with the exact solution of the Navier–Stokes equation applied to the diffusion equation and boundary conditions in wellbore.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.