arXiv: Populations and Evolution | VOL. 5845
Read

Fluctuations in models of biological macroevolution

Publication Date Feb 28, 2005

Abstract

Fluctuations in diversity and extinction sizes are discussed and compared for two different, individual-based models of biological coevolution. Both models display power-law distributions for various quantities of evolutionary interest, such as the lifetimes of individual species, the quiet periods between evolutionary upheavals larger than a given cutoff, and the sizes of extinction events. Time series of the diversity and measures of the size of extinctions give rise to flicker noise. Surprisingly, the power-law behaviors of the probability densities of quiet periods in the two models differ, while the distributions of the lifetimes of individual species are the same.

Concepts

Quiet Periods Models Of Coevolution Sizes Of Events Fluctuations In Sizes Quantities Of Interest Diversity Sizes Models Of Biological Coevolution Biological Macroevolution Biological Coevolution Flicker Noise

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Jan 23, 2023 to Jan 29, 2023

R DiscoveryJan 30, 2023
R DiscoveryArticles Included:  3

Climate change adaptation has shifted from a single-dimension to an integrative approach that aligns with vulnerability and resilience concepts. Adapt...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.