Abstract

The approach to equilibrium of an initially strip-shaped domain in $d=2$ is calculated using both a model for interacting domain walls and Monte Carlo simulations of kinetic Ising systems. The dynamics are dominated by fluctuation effects, which result in time scales for equilibrium much faster than those predicted by a deterministic theory, but slower than those of an initially curved interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.