Abstract

A reaction-diffusion master equation has been introduced in order to model the bistable CO oxidation on single crystal metal surfaces at high pressure where the diffusion length becomes small and local fluctuations are important. Analytical solutions can be found in a reduced one-component nonlinear master equation after applying the Weiss mean-field approximation together with the adiabatic elimination of oxygen. It is shown that the Weiss mean-field approximation predicts a symmetry-breaking bifurcation associated with a phase transition. The corresponding stationary solutions of the nonlinear master equation are supported by Gillespie-type Monte Carlo simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.