Abstract

At the very foundation of the second law of thermodynamics lies the fact that no heat engine operating between two reservoirs of temperatures TC ⩽ TH can outperform the ideal Carnot engine: 〈W〉/〈QH〉 ⩽ 1 − TC/TH. This inequality follows from an exact fluctuation relation involving the nonequilibrium work W and heat exchanged with the hot bath QH. In a previous work (Sinitsyn 2011 J. Phys. A: Math. Theor. 44 405001) this fluctuation relation was obtained under the assumption that the heat engine undergoes a stochastic jump process. Here we provide the general quantum derivation, and also extend it to the case of refrigerators, in which case Carnot's statement reads 〈QC〉/|〈W〉| ⩽ (TH/TC − 1)−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.