Abstract

We study fluctuations of the empirical processes of a non-equilibrium interacting particle system consisting of two species over a domain that is recently introduced in [8] and establish its functional central limit theorem. This fluctuation limit is a distribution-valued Gaussian Markov process which can be represented as a mild solution of a stochastic partial differential equation. The drift of our fluctuation limit involves a new partial differential equation with nonlinear coupled term on the interface that characterized the hydrodynamic limit of the system. The covariance structure of the Gaussian part consists two parts, one involving the spatial motion of the particles inside the domain and other involving a boundary integral term that captures the boundary interactions between two species. The key is to show that the Boltzmann-Gibbs principle holds for our non-equilibrium system. Our proof relies on generalizing the usual correlation functions to the join correlations at two different times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.