Abstract

Flow fields in an annulus between two rotating cylinders with a porous lining have been numerically examined in this study. While the outer cylinder is stationary, the inner cylinder is rotating with a constant angular speed. A homogeneous and isotropic porous layer is press-fit to the inner surface of the outer cylinder. The porous sleeve is saturated with the fluid that fills the annulus. The effects of porous sleeve thickness and its properties on the flows and their stability in the annulus are numerically investigated. Three-dimensional momentum equations for the porous and fluid layers are formulated separately and solved simultaneously in terms of velocity and vorticity. The solutions have covered a wide range of the governing parameters (10−5≤Da≤10−2, 2000≤Ta≤5000, 0.8≤b¯≤0.95). The results obtained show that the presence of a porous sleeve generally has a stabilizing effect on the flows in the annulus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.