Abstract
ABSTRACTThere is a paucity of data and insight in the mechanisms of, and controls on flow separation and recirculation at natural sharply‐curved river bends. Herein we report on successful laboratory experiments that elucidate flow structure in one constant‐width bend and a second bend with an outer‐bank widening. The experiments were performed with both a flat immobile gravel bed and mobile sand bed with dominant bedload sediment transport.In the constant‐width bend with immobile bed, a zone of mainly horizontal flow separation (vertical rotational axis) formed at the inner bank that did not contain detectable flow recirculation, and an outer‐bank cell of secondary flow with streamwise oriented rotational axis. Surprisingly, the bend with widening at the outer bank and immobile bed did not lead to a transverse expansion of the flow. Rather, flow in the outer‐bank widening weakly recirculated around a vertical axis and hardly interacted with the inner part of the bend, which behaved as a constant‐width bend.In the mobile bed experiment, downstream of the bend apex a pronounced depositional bar developed at the inside of the bend and pronounced scour occurred at the outside. Moreover the deformed bed promoted flow separation over the bar, including return currents. In the constant‐width bend, the topographic steering impeded the generation of an outer‐bank cell of secondary flow. In the bend with outer‐bank widening, the topographic steering induced an outward expansion of the flow, whereby the major part of the discharge was conveyed in the central part of the widening section. Flow in the outer‐bank widening was highly three dimensional and included return currents near the bottom.In conclusion, the experiments elucidated three distinct processes of flow separation common in sharp bends: flow separation at the inner bank, an outer‐bank cell of secondary flow, and flow separation and recirculation in an outer‐bank widening. Copyright © 2012 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.